General Proximal Gradient Method: A Case for Non-Euclidean Norms
نویسندگان
چکیده
In this paper, we consider composite convex minimization problems. We advocate the merit of considering Generalized Proximal gradient Methods (GPM) where the norm employed is not Euclidean. To that end, we show the tractability of the general proximity operator for a broad class of structure priors by proposing a polynomial-time approach to approximately compute it. We also identify a special case of regularizers whose proximity operator admits an efficient greedy algorithm. We then introduce a proximity/projection-free accelerated variant of GPM. We illustrate numerically the benefit of non-Euclidean norms, on the estimation quality of the Lasso problem and on the time-complexity of the latent group Lasso problem.
منابع مشابه
An accelerated non-Euclidean hybrid proximal extragradient-type algorithm for convex-concave saddle-point problems
This paper describes an accelerated HPE-type method based on general Bregman distances for solving monotone saddle-point (SP) problems. The algorithm is a special instance of a non-Euclidean hybrid proximal extragradient framework introduced by Svaiter and Solodov [28] where the prox sub-inclusions are solved using an accelerated gradient method. It generalizes the accelerated HPE algorithm pre...
متن کاملOn Generalized Holder Inequality
A FAMILY of inequalities concerning inner products of vectors and functions began with Cauchy. The extensions and generalizations later led to the inequalities of Schwarz, Minkowski and Holder. The well known Holder inequality involves the inner product of vectors measured by Minkowski norms. In this paper, another step of extension is taken so that a Holder type inequality may apply to general...
متن کاملConvex and Network Flow Optimization for Structured Sparsity
We consider a class of learning problems regularized by a structured sparsity-inducing norm defined as the sum of l2or l∞-norms over groups of variables. Whereas much effort has been put in developing fast optimization techniques when the groups are disjoint or embedded in a hierarchy, we address here the case of general overlapping groups. To this end, we present two different strategies: On t...
متن کاملAdaptive Fista
In this paper we propose an adaptively extrapolated proximal gradient method, which is based on the accelerated proximal gradient method (also known as FISTA), however we locally optimize the extrapolation parameter by carrying out an exact (or inexact) line search. It turns out that in some situations, the proposed algorithm is equivalent to a class of SR1 (identity minus rank 1) proximal quas...
متن کاملConvex Optimization of Low Dimensional Euclidean Distances Convex Optimization Learning of Faithful Euclidean Distance Representations in Nonlinear Dimensionality Reduction
Classical multidimensional scaling only works well when the noisy distances observed in a high dimensional space can be faithfully represented by Euclidean distances in a low dimensional space. Advanced models such as Maximum Variance Unfolding (MVU) and Minimum Volume Embedding (MVE) use Semi-Definite Programming (SDP) to reconstruct such faithful representations. While those SDP models are ca...
متن کامل